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1.  INTRODUCTION:  The first half of this presentation discusses the unique challenges 
to diffusion weighted imaging (DWI) one must considering when choosing and 
designing pulse sequences.  The second half discusses the more common pulse 
sequences with their relative advantages and challenges.

2.  CHALLENGES:  
2.1 Bulk Motion Sensitivity.  A generic 
pulse sequence for diffusion-weighted 
imaging (DWI) adds a bipolar gradient 
Gdiff, in some direction, after spin 
excitation and before readout (Fig. 1).  
This gradient pair adds a phase to 
each spin proportional to the difference between its average positions during gradient A 
and during gradient B of Fig. 1 (A and B are roughly 25 msec apart).  To produce a 
measurable effect from water diffusion (with a standard deviation of displacement on the 
order of 10µm in 25 msec), a significant spin phase must be produced for this small 
motion.  A typical gradient pair might produce a 90 degree phase shift for a 
displacement of 10µm in 25msec ≈ .04 cm/sec.  Exact values will vary, but this degree 
of phase sensitivity means that any bulk tissue motion on this order (0.1mm/sec) will 
add a significant phase shift to the MR signal, which can corrupt the phase used to 
encode position across multiple TR’s (i.e. phase encoding).  For brain DWI, very slight 
rotations can produce significant linear phase shifts across the FOV, translating the 
center of k-space [1].  For brain DWI, even if the patients skull is completed fixed, 
internal motion from cardiac-driven pressure waves are problematic [2].

There are several ways to mitigate this motion-related phase, each with their 
drawbacks.  These methods include:

a. Velocity compensated diffusion 
gradients [3], as shown in Fig. 2, 
remove all phase sensitivity to 
constant-velocity patient motion 
during the diffusion weighting 
period.  A significant drawback is 
the reduction of b-value to roughly 
25% that of the standard gradients shown in Fig. 1 (in the same time).

b. Cardiac gating the pulse sequence minimizes cardiac-related motions [2,4-6], but 
reduces scan efficiency and can add signal noise due to variable TR.

c. External physical restraints on the patient can be used to reduce gross head 
motion.  In our experience, their effectiveness is highly variable and patient-
dependent.

Fig. 1.  Typical diffusion sequence, with diffusion weighting 
gradients (A,B) after excitation and before encoding.
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Fig. 2.  Two bipolar gradients can be made velocity 
compensated, with a reduction of b-value.



d. One dimensional “Navigator” echoes information can be collected along with 
imaging data acquisition to estimate rotation motion of the head via the 
corresponding k-space shift, as well as, to some degree, the nonlinear phase shifts 
from internal motion [1,5,7,8].  This can then be used to correct or eliminate data.  
Two dimensional navigation [9] and other methods for data correction have been 
proposed [10].

e. The most common method for mitigating shot-to-shot phase changes due to non-
reproducible motion is to employ single-shot techniques, in which a single 
application of diffusion weighting gradients is followed by an imaging component 
that captures all information for creating the desired spatial information.  The 
common examples of 1D (aka “linescan”), 2D Single Shot EPI, and 2D Single Shot 
FSE are discussed later in this abstract.

2.2.  Eddy Currents:  The very 
large diffusion gradients of Fig. 1 
carry with them a significant eddy 
current, which is synergistic 
because they have the same sign.  
These eddy currents are 
problematic for the imaging portion 
of the sequence that follows, 
especially for EPI-related sequences.  The gradients of Fig. 2 pose much less of a 
problem due to their net zero-area (long term eddy currents will cancel) [11].  An 
alternative design which carries nearly the same efficiency (b-value per time) as Fig. 1, 
and keeps the eddy current immunity of those in Fig. 2 (but loses the velocity 
compensation) is shown in Fig. 3; these split diffusion gradients work well at reducing 
long-term eddy currents [12].

2.3  SNR, time restraints.  DWI images have inherently low SNR due to signal reduction 
from (1) T2 loss during the long TE’s required by diffusion weighting, and (2) signal loss 
directly from required by - optimized measurement length.  Simple models show that for 
optimal SNR, the echo train length of the imaging part of the sequence in Figs 1-3 
should be slightly less than the T2 of the tissue of interest.  Longer echo trains measure 
very low SNR data, and shorter echo trains are inefficient (too much of the scan time is 
used for diffusion weighting).

Diffusion scans can also require long scan times, due to the multiplicity of diffusion 
weightings (directions, and b-values) often needed, and also due to the added time of 
diffusion weighing to each TR.  With sufficient SNR, fast single-shot imaging methods 
can help to mitigate this problem.  If SNR is sufficient, “isotropic” diffusion weighting 
schemes exist which can weight by the average diffusion in one TR instead of the 
typical 3 TR’s (for weighting by diffusion along X, Y, and Z) [13], thus halving scan time.

2.4.  Cross terms.  Calculation of the b-value involves the integral of the applied 
diffusion-weighting gradient over time.  In the presence of additional gradients, whether 
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Fig. 3.  Split Diffusion gradients reduce eddy currents.



they applied gradients (e.g. needed for the imaging sequence) or whether they are 
“background” gradients caused by magnet inhomogeneity and susceptibility differences, 
these additional terms will affect the true diffusion weighting (b-value) that is applied.  
For this reason, it is good practice to:  (1) keep the imaging gradients compact, e.g. they 
should have zero net area as much as possible, (2) design diffusion gradients with an 
alternating or split design (such as Fig. 3) to minimize the effects of background 
gradients, and (3) go through the exercise of calculating the b-value based on the entire 
gradient waveforms (diffusion weighting plus imaging gradients) to be aware of the 
amount of bias added to the intended diffusion weighting.

2.5 Challenges to CPMG FSE.  Immediately after the diffusion weighting gradients, the 
phase of the spins will depend on patient motion, and thus be (a) spatially varying, and 
(b) generally unpredictable.  This makes employing the CPMG condition for FSE 
sequences very difficult - two basic methods to maintain an echo train are phase cycling 
methods [14,15] and separating the CPMG component [16,17].  The latter methods may 
be a bit more robust, however they can result in a significant loss of signal.

2.6  Partial Volume Effects.  The encoding of data in MRI commonly results in pixel 
values which represent contributions from different compartments, a so-called “partial 
volume” effect.  While this is linear in the collected images, the non-linear effects of 
diffusion weighting and post-processing of DWI images can result in significant bias of 
synthesized images.  The more pronounced effects are that of CSF on the calculated 
ADC of adjacent tissue, and that of adjacent, non-parallel white matter tracts (or white 
matter tracts adjacent to CSF) on the calculated fractional anisotropy value.

3.  COMMON PULSE SEQUENCE DESIGNS
3.1.  Single Shot EPI (SS-EPI) Methods.  By far the most common sequence for 
collecting DWI images is SS-EPI.  Although motion during diffusion weighting does 
create spatially varying phase, it is remains constant throughout the imaging 
experiment, and thus usually has negligible impact.  Because EPI is a rapid method of 
acquisition, it lessens the time constraints {section 2.3} and keeps the echo train 
relatively short, helping to retain SNR {section 2.3}.  Sensitivity to off-resonance can 
introduce significant warping and signal pileup artifacts near the skull base, implants, 
and regions where susceptibility-related gradients are present.  The use of split diffusion 
gradients {Fig. 3, section 2.2} is very beneficial for SS-EPI, since eddy currents from 
diffusion gradients will geometrically warp the image - since eddy currents will vary 
between different b-values and directions of diffusion weightings, this warping will vary, 
making registration of images with different diffusion weightings difficult.  A plethora of 
post-processing methods for removing these warpings exists [an incomplete list is refs. 
18-20] and are typically necessary for accurate combination of DWI images using SS-
EPI.

Another common artifact seen in SS-EPI comes about from the shifting of k-space from 
head rotations [1] and the partial k-space acquisition common in SS-EPI.  If the rotation-
induced shift of data is toward the uncorrected part of k-space, then significant artifacts 
can appear in the image.  For this reason, the uncollected part of k-space should not be 



too large (i.e. should be much less than 50% of the “total” phase encodings).  Even in 
this case, it should be noted that a shift of k-space data along the phase encoded 
direction will change the effective TE and move the center of k-space off of the spin 
echo, and can change the effective TE, and can therefore create small biases in signal 
values.

The advent of parallel imaging (SENSE) methods [21] has proven to be very important 
to SS-EPI DWI [22].  The ability to measure only every Nth phase encoding line reduces 
geometric warping and eddy current sensitivity by N, speeds up data acquisition, and in 
many cases improves SNR over the N(-1/2) typically predicted by minimizing T2* losses 
and making the echo train closer to optimal for SNR {section 2.3}.

3.2  Multi-shot Methods.
Combining data from multiple TR’s into one image typically requires some sort of 
“navigator” information about the phase acquired during each set of diffusion weighting 
gradients.  Multishot methods generally allow for higher matrix sizes and potentially 
higher SNR (by collecting at the optimal echo train duration), but can often exhibit errors 
due to uncorrected phase.

3.3.  FSE Methods.  
Many FSE-based methods have been introduced in the literature.  These methods have 
the advantage of dramatically reduced sensitivity to eddy currents and susceptibility 
gradients compared to EPI-based methods.  They also remove T2* blurring.  The 
biggest obstacle problem of FSE-based DWI is the inability to reliably achieve a CPMG 
train of refocussing pulses, which can generally degrade the signal after a few echoes.  
Approaches to this are discussed above {section 2.5}.

FSE methods include single-shot methods [16], which avoid the phase problems of 
multi-shot.  DifRad DWI [23] uses radial encoding to reduce sensitivity to motion.  Twin-
navigator methods have been proposed for monitoring phase variations [24].  
PROPELLER DWI [25] collects imaging data with ‘built-in’ 2D navigation to facilitate 
multi-shot phase correction from head rotation and cardiac motion.

3.5  LineScan (1D) Methods.  By exciting spins in a column and Fourier encoding in 
only one direction, linescan methods mitigate the susceptibility and eddy current 
sensitivity of EPI methods while avoiding the need for multi-shot imaging [2].  These 
lines of data may be collected contiguous within a desired plane in order to form an 
image [26].  The challenge to these methods is longer imaging times and reduced SNR.

3.6  Stimulated Echo DWI.  One can design stimulated echo DWI experiments [27].  An 
advantage of these methods is that the diffusion time can be made very long (but not 
significantly longer than tissue T1, e.g. on the order of 1 second or less), which for 
periodic motions can significantly reduce the bulk motion sensitivity.

3.7  FLAIR Methods.  All of the above methods can be combined, as desired, with 
FLAIR methods to suppress the CSF signal [28].  While this increases scan time, 



removal of the CSF signal has been shown to produce more accurate ADC values and 
anisotropy maps in areas bordering CSF spaces.

3.8  SSFP Methods.  An entire class of methods, which is somewhat separate from the 
above methods, is based on steady state free precession imaging [e.g. refs 29-31].  
Adding small diffusion-sensitive gradients to each TR creates diffusion weighting - these 
sequences are fast and higher resolution.  One of their biggest challenges is the 
extraction of quantitative diffusion information, since the diffusion weighting depends on 
the relaxation properties of the tissue, unlike the non-steady-state methods above.
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